Nuclear FOXO3 predicts adverse clinical outcome and promotes tumor angiogenesis in neuroblastoma
نویسندگان
چکیده
Neuroblastoma is the most frequent, extracranial solid tumor in children with still poor prognosis in stage IV disease. In this study, we analyzed FOXO3-phosphorylation and cellular localization in tumor biopsies and determined the function of this homeostasis regulator in vitro and in vivo. FOXO3-phosphorylation at threonine-32 (T32) and nuclear localization in biopsies significantly correlated with stage IV disease. DNA-damaging drugs induced nuclear accumulation of FOXO3, which was associated with elevated T32-phosphorylation in stage IV-derived neuroblastoma cells, thereby reflecting the in situ results. In contrast, hypoxic conditions repressed PKB-activity and caused dephosphorylation of FOXO3 in both, stroma-like SH-EP and high-stage-derived STA-NB15 cells. The activation of an ectopically-expressed FOXO3 in these cells reduced viability at normoxia, but promoted growth at hypoxic conditions and elevated VEGF-C-expression. In chorioallantoic membrane (CAM) assays STA-NB15 tumors with ectopic FOXO3 showed increased micro-vessel formation and, when xenografted into nude mice, a gene-dosage-dependent effect of FOXO3 in high-stage STA-NB15 cells became evident: low-level activation increased tumor-vascularization, whereas hyper-activation repressed tumor growth.The combined data suggest that, depending on the mode and intensity of activation, cellular FOXO3 acts as a homeostasis regulator promoting tumor growth at hypoxic conditions and tumor angiogenesis in high-stage neuroblastoma.
منابع مشابه
Repression of BIRC5/survivin by FOXO3/FKHRL1 sensitizes human neuroblastoma cells to DNA damage-induced apoptosis.
The phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB) pathway regulates survival and chemotherapy resistance of neuronal cells, and its deregulation in neuroblastoma (NB) tumors predicts an adverse clinical outcome. Here, we show that inhibition of PI3K-PKB signaling in human NB cells induces nuclear translocation of FOXO3/FKHRL1, represses the prosurvival protein BIRC5/Survivin, and ...
متن کاملFOXO Transcription Factors as Potential Therapeutic Targets in Neuroblastoma
The hallmark of cancer cells is deregulated growth, inhibition of differentiation, and delay or blockage of programmed cell death. Tumor cells that are independent of extraand/or intracellular regulatory mechanisms due to mutations in proto-oncogenes and tumor suppressors acquire the ability of uncontrolled proliferation and invasion into other tissues. FOXO (FOXO1, FOXO3, FOXO4, FOXO6) transcr...
متن کاملFOXO3/FKHRL1 is activated by 5-aza-2-deoxycytidine and induces silenced caspase-8 in neuroblastoma
Forkhead box O (FOXO) transcription factors control diverse cellular functions, such as cell death, metabolism, and longevity. We analyzed FOXO3/FKHRL1 expression and subcellular localization in tumor sections of neuroblastoma patients and observed a correlation between nuclear FOXO3 and high caspase-8 expression. In neuroblastoma caspase-8 is frequently silenced by DNA methylation. Conditional...
متن کاملThe tubulin inhibitor MG-2477 induces autophagy-regulated cell death, ROS accumulation and activation of FOXO3 in neuroblastoma
Neuroblastoma is the most frequent extra-cranial solid tumor in children with still high mortality in stage M. Here we studied the tubulin-inhibitor MG-2477 as a possible therapeutic agent for neuroblastoma therapy and uncovered that MG-2477 induces death in neuroblastoma cells independent of PKB-activation status and stage. MG-2477 triggers within 30 minutes extensive autophagosome-formation t...
متن کاملThe long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression
Neuroblastoma is the most common solid tumor during early childhood. One of the key features of neuroblastoma is extensive tumor-driven angiogenesis due to hypoxia. However, the mechanism through which neuroblastoma cells drive angiogenesis is poorly understood. Here we show that the long noncoding RNA MALAT1 was upregulated in human neuroblastoma cell lines under hypoxic conditions. Conditione...
متن کامل